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New Fast and Accurate Line Parameter
Calculation of General Multiconductor

Transmission Lines in
Multilayered Media

Frank Olyslager, Student Member, IEEE, Niels Fach¢, and Dani€l De Zutter

Abstract —This paper presents a considerably enhanced
method to calculate C, L, and R of a multiconductor bus in a
multilayered medium. Different board technologies, conductors
of complicated shape, and conductors embedded in different
Iayers can be handled without loss of accuracy or substantial
increase in CPU time compared with existing simulation tech-
niques. Correct determination of skin effect losses is shown to
depend critically on surface charge modeling. Surface charge
discontinuities are explicitly taken into account, which results in
reduced computation time. A further reduction of computation
time is obtained by a new treatment of the calculation of the
Green’s function.

I. INTRODUCTION

N recent years much theoretical effort has been in-

vested in modeling multiconductor transmission lines
in multilayered media in the quasi-TEM limit [1]-[3] as
well as in the full-wave regime [4]-[7]. Starting from the
findings presented in previous work and adding a number
of innovations, it was our purpose to develop a very fast,
and at the same time accurate, software package for the
line parameters of a general electrical bus configuration
in the quasi-TEM limit.

Owing to the importance of a controlled impedance for
high-speed signal transport in computers and telecommu-
nication, flexible design of multiconductor buses becomes
increasingly important. The theory presented in this pa-
per and its implementation on modern workstations allow
for real-time use in circuit simulators which predict the
signal behavior (crosstalk, reflection, pulse propagation,
etc.) of electrical bus configurations. Our approach explic-
itly includes a detailed modeling of conductors with curved
sides or of circular cross section. This allows us to handle
new technologies such as discrete wiring boards and to
study the influence of the rounding of edges or of under-
etching in detail.
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We use an integral equation for the surface charges on
the conductors which is solved by the point-matching or
collocation technique. The kernel of the integral equation
is an appropriate Green’s function of the layered medium.
This Green’s function is calculated in the spectral domain
with a new technique, first discussed in [8]. This technique
allows us to interchange the inverse spatial Fourier trans-
form with the integration over the conductor surfaces.
Interchanging the integrations has two benefits. In many
cases the integration over the conductor surface can be
done analytically or results in integrations which can be
performed accurately with special quadrature formulas. A
second advantage is that the integration over the conduc-
tor surface can be done once for almost all the point-
matching points, which results in a fast algorithm.

The basis functions used in the expansion of the sur-
face charge density are very general. In Sections IV and
VI the use of piecewise-linear basis functions is ex-
plained. Qur algorithm is also applicable to representa-
tions that are piecewise-constant, piccewise-parabolic,
piecewise-cubic, etc., as will be demonstrated in the ex-
amples. In all cases the special behavior of the surface
charge density at edges and layer interfaces is taken into
account as predicted by Meixner [9].

We also extended our algorithm to include small losses
caused by the skin effect in the conductors and ground
planes. We adopted and modified the method of [3] for
the Green’s function of the layered medium. This allows
us to handle stripline configurations without having to
approximate the second ground plane by a finite conduc-
tor and to handle multilayered permeable media. The
necessity to extend the surface charge modeling beyond a
piecewise-constant representation in order to obtain accu-
rate results for the resistance matrix is demonstrated in
Section VII.

The examples given in Section VII demonstrate the
accuracy and generality of our method.

II. GEOMETRY

The structure under consideration is a multilayered one
(Fig. 1). Each of the L layers is homogeneous and isotropic
and has an arbitrary relative permittivity e, ;, relative
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Fig. 1. Geometry of a general multiconductor electrical bus in a multi-
layered medium.

permeability w, ;, and thickness d,. At the top and bottom
of the structure we have either a semi-infinite layer or a
perfectly conducting metal plane. This means that we
distinguish three types of geometries: open (no metal
plane), half-open (one metal plane), and closed (two
metal planes). There are N conductors, which are
bounded by a combination of straight and curved sides.
We restrict ourselves to curved sides which are parts of a
circle or of an ellipse. More general curved sides, how-
ever, can easily be included. These conductors may be
located in more than one layer at the same time. We
choose a right-hand coordinate system with the x axis
parallel to the conductors, the y axis parallel to the layers
in the cross section, and the z axis perpendicular to the
layers. The quantity z;_, ; is the z coordinate of the layer
interface between layer i —1 and layer i. The proposed
solution is valid for very good conductors with small losses
due to the skin effect.

III. OUTLINE OF THE SOLUTION

In the first place we search the capacitance matrix, C,
of the structure under consideration. To find C we make
use of the classical integral equation for the surface
charge density. As a matter of completeness and in order
to introduce certain notation, we will give a short deriva-
tion of this integral equation.

Element j, k of C follows from

~Ppf(ryde, jk=1,--N

ey

where ¢, is the boundary of conductor j and pk(r) is the
surface charge density on conductor j when conductor k
is on 1 V and all the other conductors are 0 V. The
potential ¢*(r) generated by P, k(r) in the layered medium

is given by

¢*(r) = Z Ppt(r)G(riryde’, k=1

j=1 c,

N (2)

where G(rlr’) is the Green’s function of the layered
medium. We find the required integral equation for the
unknown surface charge densities p; k(r) by requiring that
¢*(r) be 1 V on conductor k and 0 V on all other
conductors; hence

lim Z ¢pk(r)G(r|r)dC =8,

TOT=1g,

(3)

where §; , is the Kronecker delta. This integral equation
is solved with the method of moments combined with
collocation or point matching. The Green’s function is
found in the spatial Fourier domain with respect to the y
direction. The spatial Green’s function, G(rlr’), follows
from an inverse Fourier transformation of the spectral
Green’s function G(k 21z

1 4o
Griry=— [ G (4)

We introduce an asymptotic Green’s function,
G*(k,, z|z), which is equal to the full Green’s function,
G(k,,z|z"), for high k, values. Now we define a finite
Green s function, Gf‘“(k ,z]z"), as

ky,zlz')cos[k, (v —y')] dk

G™(k,,zl2")
G(ky,z]z’), 0<k, <k,
= G(ky,zlz')—Gas(ky,ZIZ’), k.<k,<k, (5
0, k,<k,<+o

The constants k£, and k, are suitably chosen constants
which must be chosen such that a good balance is reached
between numerical accuracy and CPU time require-
ments. At k, the difference between G(k,z|z") and
G*(k,, z|z') becomes negligible.

We can rewrite (3) using (5):

o 1 k. k(W fin '
Emh et ele)
-cos[k (y,—y")]dc' dk,

+ Z lim —¢p]k(r f Gas(ky,zlz)

—
1)‘ r

-cos[ky(y —y)] dk,dc' =5, ,,
i,k=1,--,N. (6)

For the asymptotic integration we cannot interchange the
integration and the limiting operation owing to self-patch
contributions. Indeed, interchanging the two operations
would lead to divergent integrals.

The inductance matrix, L, is found as the inverse
matrix of the capacitance matrix of the same geometry
but with the permittivity of each layer replaced by the
inverse of the permeability.

The resistance matrix, R, arising from losses in the
conductors and ground planes is found with the method
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Fig. 2. Conductor surface divided into segments and point-matching
points with s the arc length for each segment measured from one end
point of the segment.

described in [3]. Our method used for the losses in the
ground planes is different and more general from the
applied method in [3]. Our method allows layers of differ-
ing permeability. In contrast to [3], no distinction is made
between an upper and a lower ground plane because we
use the Green’s function of the layered medium. We need
to calculate the integral over the ground plane of the
square of the surface current, J,. This surface current, J,,
is found as the surface charge density, p, in the equivalent
electrostatic problem used to calculate L. The charge
density itself is found from the z derivative of the poten-
tial at the ground plane(s). For the integration over the
ground plane(s) a Gaussian quadrature integration is used.

IV. DiscreTIZATION OF THE INTEGRAL EQUATION

We divide the surface of each conductor into a number
of segments (Fig. 2). Let s be the distance from one end
point of the segment to a point on the segment. If one of
the end points of the segment is a corner of the conduc-
tor, we choose s=0 at this particular end point. We
represent the surface charge density, p(s), along the seg-
ment as

w=—0.5. (7
A, and A, are the unknowns for the considered segment,
and u follows from Meixner’s edge conditions [9]; e.g.,
w=—0.5 at the end points of infinitely thin conductors.
At the junction of two segments we impose the continu-

p(s) =s(Ay+ Ass),

representation and not a representation with triangular
basis functions as in [1] because each term can be handled
in the same way and because this representation can
easily be extended to more general representations. By
simply adding a term we go from a piecewise-linear to a
piecewise-parabolic representation, as will be illustrated
in Section VII.

The point-matching points are chosen in the middle of
each segment. ‘Along corner segments we take two point-
matching points to get a stable solution. Because of this
small oversampling we obtain a system of equations with
slightly more equations than unknowns. This system is
solved in the least square sense.

V. THE SPECTRAL GREEN’S FUNCTION

The spectral Green’s function of the layered medium is
the solution of
2

d
EZ—ZG(ky,z!z’)—— kiG(k,,z|z)=6(z—2"). (8)

The layer in which z’ is located is called the excitation
layer, e. We introduce new relative z coordinates with
respect to the bottom and top of layer e: w,=2'—2,_,,
and v, =z, ,,;— z". A column vector, ¢(z), is defined as

G(k,.zlz") )
c(z)= 1 d R 7= — .
E}}—Z—EG(k"”le) 6rE()},(y

&)

The vector ¢(z) is continuous at layer interfaces, where
we use the shorthand notation ¢(z=2z,_; )=¢; . It is
determined using the methods described in [1] and [6]
with, however, an important modification (first discussed
in [8]) in order to have explicit dependence on the excita-
tion position. When we “role up” the layers above and
under the excitation we get the following representation
at the top and bottom of the excitation layer:

e—1

Cote™ l_I IviuKu exp(kydi)Dl

i=1
and

e+1

ity of the surface charge density. This already places a Copr1™= 1‘1 deKd eXp(kydi) D, (10)
first restriction on the unknowns. We have chosen this ’ =L
with
L1 1+exp(-2k,d;) ~Z,[1-exp(~2k,d,)]
"2\ -1/Z[1-exp(~2k,d,)] 1+exp(—2k,d,)
, 1 1+exp(—2k,d,) Z[1—exp(—2k,d,)] (1)
“2\1/z[1-exp(~2k,d,)]  1+exp(—2k,d,)
and
u § d — s 12
K" = ‘“l/Zl and K%= __1/ZL . ( )
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In the presence of a ground (top) plane, s =0in K* (K%)
and Z, (Z,) is the Z value belonging to the layer imme-
diately above (below) the ground (top) plane. If the bot-
tom (top) layer of the medium is semi-infinite, then s =1
and Z, (Z;) is the Z value belonging to this layer. D,
and D; are unknowns to be found by the procedure
explained below.

Now we replace D, and D, by new unknowns R{ and

e e—1
Ij exp(k,d,)D, and R{= 1;11 exp(k,d,)D,.
(13)

For further use we introduce two new column vectors,
cd_l’e and ¢/_q .

Ry =

e e—1
¢!, .=TINKR] and ci_;,=]]N'K“R]. (14)
=L i=1
We also introduce two matrix functions, M%(Az) and
M*"(Az), in the variable Az:

ch(k,Az) Z,sh(k,Az)
MY(Az) =
1/Z,sh(k,Az)  ch(k,Az)
ch(k,Az ~Z,sh(k,Az
ey o[ P80 (k,82)
-1/Z,sh(k,Az) ch(k,Az)

(15)

The variable Az will take values v, and w, in the sequel.
Starting from (8), (9), (10), (13), (14), and (15), the follow-
ing relations are found to hold at z”:

Md(Ue)ce.eﬂ—l‘Mu(we)ce—l,ez((1)) (16)

and
(17)
Finally (17) yields, after left multiplying with [M*(w )],

Z,sh(k,w,)
ch(k,w,)

M”(We)ced—l,e - Mu(we)cg—l,e = ((1))

d u —

(18)

We have replaced the original excitation, ((1)), at z' by a
Z,sh(kyw,)
ch(k,w,)
excitation layer. The two linear equations in (18) are in
the unknowns R and R¢. Let the solution for b = ( (1)) be

new excitation, b=( ), at the bottom of the

(v2,v9) and for b={?) be (i%,i?). By superposition we
1,V 1 i
get, for R{ and RY,

R?=Z sh(k,w,)v{+ch(k,w,)i

R} =2Z sh(kw,)vf +ch(k,w,)i]. (19)

Suppose we want to know G(k, z|z') at an observation
level z >z’ in layer 0. We define relative coordinates
Wo=2—2,_,, and v,=z,,,,—2z where z, ,, and
Z, ,+1 are the bottom and top coordinate of the observa-

Ei(jn layer 0. Now its easy to find the Green’s function [1],
6l
G(k,,zlz’) = {Ae_oexp [k},(vo +w,— de)]
+ B, ,exp [ky(vo - w, = de)]
+C, ,exp [ky( -v,+w,— de)]
+ D, ,exp [ky( —v,—W,—~ de)]}
e+1

11 exp(—k,4,).

i=o

(20)
The coefficients 4, ,, B, ,, C,,, and D, , depend only
on the positions of the excitation and observation layers
and not on the exact positions of the excitation and
observation levels themselves. These coefficients have to
be calculated only once for each observation—excitation
layer couple. We have found the explicit analytical depen-
dence on the excitation level z' which allows us to have
an explicit argument in the integration over the excitation
segment. In some cases we will be able to perform this
integration analytically. The form (20) and the derivation
leading to it can only be used for observation levels above
the excitation in order to have exponentially decaying
terms in all numerical calculations. For observation points
under the excitation we transform the excitation to the
top of the excitation layer. However, the result can also
be found immediately from (20) by making use of re-
ciprocity.

For the asymptotic Green’s function, G*(k Vs z|z"), only
four waves, going from excitation to observation position,
are taken into account. We obtain the following expres-
sion for G*(k,, z|z") when z > z"

G*(k,, 212"
V4
= je{exp [k_v(vo +w, — de)]
+ KL cexpky(v,~w,—d,)]
+ Ky .1 exp[ky( —v,+Ww,— de)]
+ K g K e exp [k (= v, —w,—d,)]}

e+1

: n Ttu—l,z exp(* kydl)‘

i=o0

(21)

The first term corresponds to a wave which travels di-
rectly from excitation to observation. The second term is
a wave which is reflected from the bottom of the excita-
tion layer and then travels to the observation. The third
term is a wave which is reflected from the top of the
observation layer and the last term represents a wave
which is reflected from both the top of the observation
layer and the bottom of the excitation layer. The reflec-
tion and transmission coefficients K and T are given by

K =61_61+1 Kd _61_6171
i,i+1 4 i—1,0 +
€, €+ P €41
T, - 26 (22
i~—1,t + )
€1 €;
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TABLE 1
CAPACITANCE AND RESISTANCE, UsING DIFFERENT NUMERICAL APPROACHES, FOR A WIRE WITH DIAMETER d = 1
LocATED IN A SEMI-INFINITE DIELECTRIC WITH €, = 4 AT A HelguT H =2
ABOVE A GROUND PLANE

C (F/m) R/R,(1/m)
Parabolic representation with eight segments 1.07867 e-10 0.32875
Linear representation with eight segments 1.07870 e-10 0.32882
Linear representation with 24 segments 1.07847 e-10 0.32875
Harrington and Wei [3] 1.073 e-10 0.3299
Analytical formula [3] 1.07844 e-10 0.32875

TABLE 1I
CAPACITANCE AND RESISTANCE FOR THE WIRE USED IN TABLE I FOR DIFFERENT
VALUES OF H

Piecewise Parabolic

Analytical Formula
[3]

Piecewise Linear
24 Divisions

H 8 Divisions
3 C(F/m) 8.98222 e-11
3 RU/m) 0.32282
4 C(F/m) 8.03832 e-11
4 R(/m) 0.32083
5 C(F/m) 7.43519 e-11
5 RO/m) 0.31991

8.98075 e-11 8.98063 e-11
0.32283 0.32283
8.03755 e-11 8.03746 e-11
0.32083 0.32083
7.43454 e-11' 7.43446 e-11
0.31991 0.31991

VI. THE INTEGRATIONS
A. Finite Spectral Integral Contribution

First we will pay attention to the first term in (6). The
Green’s function (20) and the charge density representa-
tion (7) are substituted in (6). The integration over &, is
done numerically by means of a Gauss quadrature inte-
gration. For an integration over the excitation segment we
make a distinction between linear and curved segments.
For linear segments the first term of (6) yields integrals of
the following form:

5

1,= ['s” exp(as) cos (b - sc) ds (23)

Sg
where a, b, and c are constants. When v is an integer, I,
is calculated analytically; otherwise a Gauss—Jacobi or
Gauss quadrature integration is used, depending on
whether s, is zero or not. The case where » is not an
integer occurs only for segments at the corners of the
conductors.

For circular and elliptic segments the first term of (6)
yields integrals of the following form:

1,= [*"*(¢-.)" explasin(4)]
o+ b,
cos[b —ccos(¢)]

. {sin[b —ccos(¢)] }
Ya?cos? (¢) + c2sin®(¢) dob (24)

where a, b, ¢, and ¢, are constants. When |a| =|c| we
have circular segments; when |a|# |c| we have elliptic
segments. The integrations arc performed using a
Gauss—Jacobi quadrature if ¢,=0 and a simple Gauss
quadrature if ¢, # 0. The same technique can be applied
to more general segments with other parameter represen-
tations. The quantities s, in (23) and ¢, in (24) are
different from zero when the observation point and the

points of the excitation segment have the same z coordi-
nate. This is because we have to use another Green’s
function for the part of the excitation segment above and
the part under the observation point. The integration over
the excitation segment needs to be performed only once
for all observation points, except when there are observa-
tion points at the same level as the excitation segment.

B. Infinite Spectral Integral Contribution

Now we will take a closer look at the second term in
(6). We again insert the asymptotic Green’s function (21)
and the charge density representation (7) in this second
term. For linear segments we get integrals of the follow-
ing form:

Iy=f+ exp(—k,d)
k, ky

- ['sexp(ak,s)cos [k, (b — sc)] dsdk, (25
So

where a, b, ¢, and d are constants. When » is an integer,
both integrations can be calculated analytically. However,
if v is not integer, only the spectral integration is per-
formed analytically and the spatial integration is per-
formed numerically. We refer the reader to the Appendix
for a full discussion. Circular and elliptic segments yield
integrals which are more complicated than (25). However,
they can be handled with the same techniques as in the
Appendix.

VII. ExaMPLES
A. Hlustration of the Use of Parabolic Basis Functions
In this example we demonstrate and discuss the use of

a piecewise-parabolic representation for the surface
charge density. Along each segment we represent p(s) as

p(s)=s*(Ag+ A;s+ Ay5%),  w>-05. (26)
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Fig. 3. Piecewise-constant and piecewise-linear representations of the surface charge density on a rectangular conductor
with (a) three divisions and (b) 12 divisions on each side.

TABLE 1II
CAPACITANCE AND RESISTANCE (r = aR /R,) FOR THE RECTANGLE IN FIG. 3

Three Divisions per Side

12 Divisions per Side

Piecewise-constant representation

C=44834¢e-11F/m

C=45287e-11 F/m

r=0.19747 r=0.21085
Piecewise-linear representation C=45382¢e-11F/m C=4.5377e-11F/m
r =0.23753 r = 0.23753

We have now three unknowns, 4,, 4; and A4,, in each
segment. At the junction of two segments we impose the
continuity of p(s) and of dp(s)/ds. There remains one
unknown for each segment. Equations for these remain-
ing unknowns are found by means of point matching. The
use of recursion relations in integrations of the type (23),
(24), and (25) has as a consequence that going from a
piecewise-linear representation to a piecewise-parabolic
one does not significantly increase CPU time. On the
contrary, the use of a parabolic representation allows us
to save drastically on the number of segments, as illus-
trated in the example below. We consider a circular wire
with diameter d=1 located at a height, H, above a
ground plane in a semi-infinite dielectric with ¢, =4. In
Table I the capacitance, C, and the resistance, R, per unit
length are given for different numerical approaches when
H =2, Losses in the wire are divided by the surface
resistance, R,. We notice that the results for eight piece-
wise-parabolic segments are as accurate as the results for
24 piecewise-linear segments. In particular, the accuracy
of R /R, is impressive when we use a parabolic represen-
tation. In Table II, C and R /R, are given for H =3, 4,
and 5 both for a piecewise-parabolic and for a piecewise-
linear representation.

B. Hllustration of the Necessity of Having Accurate Surface
Charge Density Representations for the Calculation of R

In example 3 of [3] the R matrix is given for a combina-
tion of four conducting transmission lines. We will show
that the results for R presented in [3] have a limited
degree of accuracy, taking into account the small number

AT
[ ) 3 Er,2

202.3 Sh 202.3 Y
\ 164.5 ) 4
A C. X. ) ( >_ Y 'Uti. —
3

'y y

290.6 249.5 290.6 249.5
y y & v \ BEY
NN RN NN N\

(a) )

Fig. 4. Typical Multiwire structure in (a) microstrip and (b) stripline
configurations.

of segments with piecewise-constant charge density repre-
sentations used in the numerical approach. To this end
we consider a rectangular conductor, with dimensions
a X 2«, located in the air at a height o above a ground
plane (inset of Fig. 3(a)). Fig. 3(a) shows a surface charge
density plot for three segments on each side of the
rectangle for piecewise-constant basis functions (blocked
line) and piecewise-linear basis functions (continuous
line). In Fig. 3(b) we used 12 segments on each side. In
Table 111 the values for C and r = ¢ R /R, are given. We
can sce that the use of a small number of piecewise-con-
stant segments is acceptable for the calculation of C. This
is because the area under the piecewise-constant charge
distribution plot is almost equal to the area under the real
charge distribution plot, and C is proportional to this
arca. R, however, is proportional to the area under the
square of the real charge distribution plot (in fact propor-
tional to the square of J, but we use the equivalent
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Fig. 5. Capacitance of the wire in Fig. 4(a) and Fig. 4(b) as a function
of e, ,.

electrostatic problem terminology). This means that we
must have a very accurate charge density representation,
especially at singularities, in order to get accurate results
for R. We indeed notice in Table III that the values for C
are not that far apart, especially when the number of
divisions increases. The values for r, however, remain too
small when using a piecewise-constant representation,
even for an increased number of divisions.

C. Hlustration of a Multiwire Bus Structure

The method presented in this paper was developed
with the particular aim in mind of also being able to
handle new circuit board technologies such as the discrete
wiring boards. The next example considers a realistic
Multiwire structure with a wire located in a three-layered
medium as shown in Fig. 4(a) (microstrip configuration)
and Fig. 4(b) (stripline configuration). The dimensions are
given in mm and €, ; =4 and ¢, ; =1. In Fig. 5 we show a
plot of C as a function of ¢, , for both configurations. We
used 24 divisions on each wire. Fig. 6(a) (Fig. 6(b)) shows
a plot of the surface charge density on the wire of Fig.
4(a) when ¢, , = 4.3 (¢, , = 3.7). The surface charge den-
sity becomes zero in F1g 6(a) and infinite in Fig. 6(b) at
the intersection of the layer interface, as predicted by
Meixner’s condition. In Table IV the C, L, and R matri-
ces are given for the structure of Fig. 4(a) (¢, , = 4.3) with
three wires at the same height numbered from left to
right with a center to center separation of 360 mm. The R
matrices for losses both in the ground plane and in the
wires are given. The results for C and L are given with
four to six significant digits. This demonstrates the accu-
racy of our method because the program was written in
single precision with a seven-digit representation.

D. Ilustration of the Use of Curved Sides

The last example (Fig. 7) shows the flexibility of our
method and in particular the possibility of accurately
modeling conductors with a complicated shape. We con-

907

sider three conductors around a wire above a ground
plane. The C matrix is given by

136.00 —4533 —4533 —4533
| —4533 12887 —36.92 —36.92 ‘
C=\_4533 —3692 14864 -3173| PE/™.
_4533 —36.92 —31.73 148.64
(27)

Notice that C,; = C,, + C;5+ C,, to within the numerical
accuracy. This means that the central conductor is almost
completely shiclded from the ground plane.

APPENDIX

In this Appendix we will go into some detail about the
calculation of (25). First we introduce the integral
J(k_,n,d,b,c):

+wexp(—k,d)

J(k,,n,d,b,c)= f o cos (kb +c)dk,.
y

(A1)
This integral can be calculated analytically by making use

of exponential integrals [10]. The result is

n—1 ._1i i—1 —i—1)!
J=—eXp(‘kcd)Z( )kT—f(,f:)! !

1=1

~cos[k.b+c+(i—1)t]

(_1)nm —
TE)

-+ tsinfc+(n—1)t]

—[y+In(k,m)]cos[c+(n—1)t]

o (=1 'kim

cos[c+(n—1+i)t] (A2)

oy
=1 il

with y=0.57722--- being Euler—-Mascheroni number,
m=Vb?>+d?*, and t=arctan2(—b,d). The function
— g <arctan2(x, y) < is the inverse tangent of x di-
vided by y for four quadrants in the xy plane. When v is

an integer we integrate (25) analytically and get the fol-
lowing result:
n+l—i

n+1 nts

In= m](kui+1yd—aso,b—CSO,iT)
1=1 ’
nzsit-kl-t
~ i (ki Ld=asb—asiin) | (A3)

with 7= arctan2(— ¢, — a). When v is not an integer the
integration over s is calculated numerically and we make
a further distinction between s, =0 and s, # 0. When s,
is equal to zero we can place (25), making use of (A2),
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p(a. u)

Distance on conductor surface (a. u.) Distance on conductor surface (a. u.)
(a) (b)
Fig. 6. Surface charge density on the wire of Fig. 4(a) when (a) €, , = 4.3 and (b) e, , = 3.7.
TABLE IV

CAPACITANCE, INDUCTANCE, AND RESISTANCE MATRICES FOR A BUs MULTIWIRE STRUCTURE
wITH THREE WIRES

R/R,(1/m) R/R,(1/m)

Element C (F/m) L (H/m) Wires Ground Plane
11,33 1.15101 e-10 4.04751 e-7 2.3235¢e-3 1.4877 e-3
12,21, 23,32 —4.2479 e-11 1.40617 e-7 1.3536 e-4 1.2319 e-3
13,31 —1.7326 e-12 6.3331 e-8 8.798 e-5 6.0485 e-4
22 1.33432 e-10 3.98183 e-7 2.0851 e-3 1.7456 e-3

we cannot use this formula because the first integrand has
a logarithmic singularity in x = 1. This situation will occur
in self-patch calculations. We have to rearrange the inte-
grals. After some calculations we get

1 1 v+1
y+ln(kcsl)+ln(5) 1—(5)

I=SV+1
vl v+1

_ 23“ folxvm(l—~)dx——f11n(x)(1—-;-)vdx

¥ (—1)'(kesy)'

., G

: N LoCi(-1)
Fig. 7. Curved conductgr configuration with three conductors around - oS [ i arctan 2( —c, a) Z
a wire above a ground plane. v+ j+ 1

(AS)

into the following form:
The first integral is calculated with a Gauss—Jacobi

L =5+t - y +In(k.) quadrature. The second is calculated with a special Gauss
v v+1 quadrature for logarithmic singularities. When s, is not
1 equal to zero we can put (25) in a form similar to (A4),

_ _] x"ln[(d— as]x)2+(b— cslx)Z] dx except that now we use Gauss quadratures instead of
Gauss—Jacobi quadratures. In the case of self-patch calcu-

~ 1)k lations we get a formula analogous to (A5) with inte-

=)

/ 1xV[\/ (d— as, x)2 +(b—cs, x)z} grands which again have logarithmic singularities.
1=1

i!
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