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Abstract —This paper presents a considerably enhanced
method to calculate C, L, and R of a multicondnctor bus in a

multilayered medium. Different board technologies, conductors
of complicated shape, and conductors embedded in different
layers can be handled without loss of accuracy or substantial
increase in CPU time compared with existing simulation tech-
niques. Correct determination of skin effect losses is shown to

depend critically on surface charge modeling. Surface charge
discontinuities are explicitly taken into account, which results in
reduced computation time, A further reduction of computation

time is obtained by a new treatment of the calculation of the

Green’s function.

1. INTRODUCTION

I N recent years much theoretical effort has been in-

vested in modeling multiconductor transmission lines

in multilayered media in the quasi-TEM limit [1]–[3] as

well as in the full-wave regime [4]–[7]. Starting from the

findings presented in previous work and adding a number

of innovations, it was our purpose to develop a very fast,

and at the same time accurate, software package for the

line parameters of a general electrical bus configuration

in the quasi-TEM limit.

Owing to the importance of a controlled impedance for

high-speed signal transport in computers and telecommu-

nication, flexible design of multiconductor buses becomes

increasingly important. The theory presented in this pa-

per and its implementation on modern workstations allow

for real-time use in circuit simulators which predict the

signal behavior (crosstalk, reflection, pulse propagation,

etc.) of electrical bus configurations. Our approach explic-

itly includes a detailed modeling of conductors with curved

sides or of circular cross section. This allows us to handle

new technologies such as discrete wiring boards and to

study the influence of the rounding of edges or of under-

etching in detail.
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We use an integral equation for the surface charges on

the conductors which is solved by the point-matching or

collocation technique. The kernel of the integral equation

is an appropriate Green’s function of the layered medium.

This Green’s function is calculated in the spectral domain

with a new technique, first discussed in [8]. This technique

allows us to interchange the inverse spatial Fourier trans-

form with the integration over the conductor sttrfi~ces.

Interchanging the integrations has two benefits. In many

cases the integration over the conductor surface can be

done analytically or results in integrations which can be

performed accurately with special quadrature formulas. A

second advantage is that the integration over the conduc-

tor surface can be done once for almost all the point-

matching points, which results in a fast algorithm.

The basis functions used in the expansion of the sur-

face charge density are very general. In Sections IV and

VI the use of piecewise-linear basis functions is ex-

plained. Our algorithm is also applicable to representa-

tions that are piecewise-constant, piecewise-parabolic,

piecewise-cubic, etc., as will be demonstrated in the ex-

amples. In all cases the special behavior of the surface

charge density at edges and layer interfaces is taken into

account as predicted by Meixner [9].

We also extended our algorithm to include small losses

caused by the skin effect in the conductors and ground

planes. We adopted and modified the method of [3]1 for

the Green’s function of the layered medium. This alllows

us to handle stripline configurations without having to

approximate the second ground plane by a finite conduct-

or and to handle multilayered permeable media. The

necessity to extend the surface charge modeling beyond a

piecewise-constant representation in order to obtain accu-

rate results for the resistance matrix is demonstrated in

Section VII.

The examples given in Section VII demonstrate the

accuracy and generality of our method.

II. GEOMETRY

The structure under consideration is a multilayered one

(Fig, 1). Each of the L layers is homogeneous and isotropic

and has an arbitrary relative permittivity ●, ~, relative
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Fig. 1. Geometry of a general multiconductor electrical bus in a multi-
layered medium.

permeability K,,i, and thickness d,. At the top and bottom

of the structure we have either a semi-infinite layer or a

perfectly conducting metal plane. This means that we

distinguish three types of geometries: open (no metal

plane), half-open (one metal plane), and closed (two

metal planes). There are N conductors, which are

bounded by a combination of straight and curved sides.

We restrict ourselves to curved sides which are parts of a

circle or of an ellipse. More general curved sides, how-

ever, can easily be included. These conductors may be

located in more than one layer at the same time, We

choose a right-hand coordinate system with the x axis

parallel to the conductors, the y axis parallel to the layers

in the cross section, and the z axis perpendicular to the

layers. The quantity zi _ ~,~ is the z coordinate of the layer

interface between layer i – 1 and layer i. The proposed

solution is valid for very good conductors with small losses

due to the skin effect.

III. OUTLINE OF THE SOLUTION

In the first place we search the capacitance matrix, C,

of the structure under consideration. To find C we make

use of the classical integral equation for the surface

charge density. As a matter of completeness and in order

to introduce certain notation, we will give a short deriva-

tion of this integral equation.

Element j, k of C follows from

c,,k= $P;(r) de, j,k=l,. ... N (1)

c]

where CJ is the boundary of conductor j and pj~(r) is the

surface charge density on conductor j when conductor k

is on 1 V and all the other conductors are O V. The

potential +k(r) generated by p~k(r) in the layered medium

is given by

~“(~) = f f6pf(r’)G(rlr’) de’, k=l,. . . , N (2)
jzl cJ

where G(r\r’) is the Green’s function of the layered

medium. We find the required integral equation for the

unknown surface charge densities plk(r) by requiring that

~~(r) be 1 V on conductor k and O V on all other

conductors; hence

lim ~ $p~(r’)G(rlr’) de’= a,,k, i,k=l, ””. ,N
r-r ,,=1 ~

J

(3)

where 8t, k is the Kronecker delta. This integral equation

is solved with the method of moments combined with

collocation or point matching. The Green’s function is

found in the spatial Fourier domain with respect to the y

direction. The spatial Green’s function, G(rlr’), follows

from an inverse Fourier transformation of the spectral

Green’s function G(ky, zIz’):

G(rlr’) = ~~+mG(kY, zlz’)cos [ky( y – y’)] dk,. (4)

We introduce an asymptotic Green’s function,

Ga’(kY, z] z’), which is equal to the full Green’s function,

G(k ~, z Iz ‘), for high k ~ values. Now we define a finite

Green’s function, Gfin(k,, ZI z’), as

(Gf’n kY, zlz’)

[

G(kY, z\z’), O<kY<kC

1

= G(kY, zlz’)– Gas(kY, zlz’), kC<kY<ke . (5)

o, ke<kY<+w

The constants kC and k, are suitably chosen constants

which must be chosen such that a good balance is reached

between numerical accuracy and CPU time require-

ments. At ke the difference between G(kY, z Iz’) and

Gas(kY, zIz’) becomes negligible.

We can rewrite (3) using (5):

“cos[kY(y, – y’)] dc’dkY

.cos[kY(y – y’)] dkYdc’= dt,~,

~,k= l,... ,N. (6)

For the asymptotic integration we cannot interchange the

integration and the limiting operation owing to self-patch

contributions. Indeed, interchanging the two operations

would lead to divergent integrals.

The inductance matrix, L, is found as the inverse

matrix of the capacitance matrix of the same geomet~

but with the permittivity of each layer replaced by the

inverse of the permeability.

The resistance matrix, R, arising from losses in the

conductors and ground planes is found with the method
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Fig. 2. Conductor surface divided into segments and point-matching

points with s the arclength for each segment measured from one end
point of the segment.

described in [3]. Our method used for the losses in the

ground planes is different and more general from the

applied method in [3]. Our method allows layers of differ-

ing permeability. In contrast to [3], no distinction is made

between an upper and a lower ground plane because we

use the Green’s function of the layered medium. We need

to calculate the integral over the ground plane of the

square of the surface current, JX. This surface current, .7X,

is found as the surface charge density, p, in the equivalent

electrostatic problem used to calculate L. The charge

density itself is found from the z derivative of the poten-

tial at the ground plane(s). For the integration over the

ground plane(s) a Gaussian quadrature integration is used.

IV. DISCRETIZATION OF THE INTEGRAL EQUATION

We divide the surface of each conductor into a number

of segments (Fig. 2). Let s be the distance from one end

point of the segment to a point on the segment. If one of

the end points of the segment is a corner of the conduc-

tor, we choose s = O at this particular end point. We

represent the surface charge density, p(s), along the seg-

ment as

p(s) = W(AO + AIS), p> –0.5. (7)

A. and A ~ are the unknowns for the considered segment,

and p follows from Meixner’s edge conditions [9]; e.g.,

~ = – 0.5 at the end points of infinitely thin conductors.

At the junction of two segments we impose the continu-

ity of the surface charge density. This already places a

first restriction on the unknowns. We have chosen this

with

1
/

l+exp(–2kYdi)
NU=—

representation and not a representation with triangular

basis functions as in [I] because each term can be handled

in the same way and because this representation can

easily be extended to more general representations. By

simply adding a term we go from a piecewise-linear to a

piecewise-parabolic representation, as will be illust rated

in Section VII.

The point-matching points are chosen in the middle of

each segment. ‘Along corner segments we take two point-

matching points to get a stable solution. Because c~f this

small oversampling we obtain a system of equations with

slightly more equations than unknowns. This system is

solved in the least square sense.

V. THE SPECTRAL GREEN’S FUNCTION

The spectral Green’s function of the layered medium is

the solution of

$G(ky, zIz’)–kjG(ky, zIz’)=8(.z -z’). (8)

The layer in which z’ is located is called the excitation

layer, e. We introduce new relative z coordinates with

respect to the bottom and top of layer e: we = z’ – z~ _ ~,~

and v.=z~, +l– z‘. A column vector, c(z), is defined as

The vector c(z) is continuous at layer interfaces, where

we use the shorthand notation C(Z = z, – I,i) = Ct– I,i. It is

determined using the methods described in [I] and [6]

with, however, an important modification (first discussed

in [8]) in order to have explicit dependence on the excita-

tion position. When we “role up” the layers above and

under the excitation we get the following representation

at the top and bottom of the excitation layer:

e—1

c ,-I,e = ~ ~L’Kuexp
~=1

and
e+l

c =,~+1= ~ ~dKdexp
~=L

- ZL[l-exp(-2kydt)] \
..l —

\

2 –l/Z,[l –exp(–2kYd,)] l+exp(–2kYdl)
)

1

(

l+exp(–2kyd,) Zt[l-exp(-2kYd,)]

‘t= Z l\ Zl[l–exp(–2kYd~)l l+exp(-2kYd,)
)

kYdi)D1

kYdi)D~ ( 10)

(11)

(12)

and

~u = ()–l;Z1 and‘d=(-;~z.)
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In the presence of a ground (top) plane, .s= O in Ku (Kd)
and ZI (ZJ is the Z value belonging to the layer imme-

diately above (below) the ground (top) plane. If the bot-

tom (top) layer of the medium is semi-infinite, then s = 1

and 21 ( ZJ is the Z value belonging to this layer. D ~

and D~ are unknowns to be found by the procedure

explained below.

Now we replace D1 and D~ by new unknowns R? and

R;:
e—1

R~ = fi exp(kYd, )DL and R:= ~ exp(kYdZ)D1.
~eL 1=1

(13)

For further use we introduce two new column vectors,

c~–l,. and C~_l, e:

e—1

c~.l,e= fi N~KdR; and &I,. = ~ NYKUR:. (14)
~cL ~=1

We also introduce two matrix functions, lfd(A z) and

Jf”(A z), in the variable A z:

[

ch(kYAz) Z,sh(kYAz)
~d(Az) = l/zgsh(k,Az)

ch(kYAz)
)

(

ch(kYAz) –Z. sh(k,yAz)
JfU(Az) =

–l/Z. sh(kyAz)
)

ch(kYAz) ‘

(15)

The variable A z will take values u, and we in the sequel.

Starting from (8), (9), (10), (13), (14), and (15), the follow-

ing relations are found to hold at z‘:

()oM’(ue)ce, e+l– Mu(we)ce-l,e= ~ (16)

and

Mz’(we)c:-l,c ()o–fw”(we)c:_l,. = ~ . (17)

Finally (17) yields, after left multiplying with [M’’(Wc)] -1,

d Hz. Sh (k,,W,)
Ce–l, e —c;_l, e= (18)

ch(kYw J

()We have replaced the original excitation, ~ , at z’ by a

‘ew‘Xcitationb=(z’u:?)at‘hebottom‘f ‘he
excitation layer. The two linear equations in (18) are in

the unknowns Rf and Rg. Let the solution for b =(~) be

()(u~,u~) and for b = ~ be (i;, i:). By superposition we

get, for R; and Rg,

R;= Zesh(kywe)q’ +ch(kYw. )if

RI= Z.sh(kYw.)z,l~ +ch(kYw=)ij. (19)

Suppose we want to know G(k ~, z Iz’) at an observation

level z > z‘ in layer o. We define relative coordinates

Wo=z–z 0–1,0 and U~=ZO,O+l–Z where ZO–l, O and
z .,O + ~ are the bottom and top coordinate of the observa-

tion layer o. Now its easy to find the Green’s function [1],

[6]:

G(kY, zlz’)={i4e,o exp[k,(uO+w. -d,)]

+ ~.,.ew[kv(L1o – We – ~e)]

+C., Oexp[kY( –~lo+we– de)]

+D,,Oexp [k}(–~~–w~– d,)]}

e+l

~ ~ exp(-k,dl). (20)
i=~

The coefficients Ae, ~, B,, ~, C, ~, and De ~ depend only

on the positions of the excitation and ob~ervation layers

and not on the exact positions of the excitation and

observation levels themselves. These coefficients have to

be calculated only once for each observation-excitation

layer couple. We have found the explicit analytical depen-

dence on the excitation level z‘ which allows us to have

an explicit argument in the integration over the excitation

segment. In some cases we will be able to perform this

integration analytically. The form (20) and the derivation

leading to it can only be used for observation levels above

the excitation in order to have exponentially decaying

terms in all numerical calculations. For observation points

under the excitation we transform the excitation to the

top of the excitation layer. However, the result can also

be found immediately from (20) by making use of re-

ciprocity.

For the asymptotic Green’s function, G’s(kY, z (z’), only

four waves, going from excitation to observation position,

are taken into account, We obtain the following expres-

sion for Gas(kY, zIz’) when z > z’:

()Gas kY, zlz’

+~~-l,.em[ky(tlo-we - 4)]
+K:o+l exp[kv( – U.+ ~. – ‘.)]

The first term corresponds to a wave which travels di-
rectly from excitation to observation, The second term is

a wave which is reflected from the bottom of the excita-

tion layer and then travels to the observation. The third

term is a wave which is reflected from the top of the

observation layer and the last term represents a wave

which is reflected from both the top of the observation
layer and the bottom of the excitation layer. The reflec-

tion and transmission coefficients K and T are given by

(22)
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TABLE I
CAPACITANCE AND RESISTANCE, USING DIFFERENT NUMERICAL APPROACHES, FOR A WIRE WITH DIAMETER d = 1

LOCATED IN A SEMI-INFINITE DIELECTRIC WITH e,= 4 AT A HEIGHT H = 2

ABOVE A GROUND PLANE

C (F/m) R /RJ (l/m)

Parabolic representation with eight segments 1.07867 e-10 0.32875
Linear representation with eight segments 1.07870 e-10 0.32882
Linear representation with 24 segments 1.07847 e-10 0.32875
Barrington and Wei [3] 1.073 e-10 0.3299
Analytical formula [3] 1.07844 e-10 0.32875

TABLE 11

CAPACITANCE AND RESISTANCE FOR THE WIRE USED IN TABLE I FOR DIFFERENT
VALUES OF H

H

3

3

4

4
5
5

Piecewise Parabolic
8 Divisions

C (F\m) 8.98222 e-n
R (l/m) 0.32282
C (F/m) 8.03832 e-n
R (l/m) 0.32083
C (F/m) 7.43519 e-n
R (l/m) 0.31991

Piecewise Linear
24 Divisions

8.98075 e-n

0.32283

8.03755 e-n
0.32083
7.43454 e-n’
0.31991

Analytical Formula
[3]

8.98063 e-n

0.32283

8.03746 e-n
().32()83

7.43446 e-n
0.31991

VI. THE INTEGRATIONS

A. Finite Spectral Integral Contribution

First we will pay attention to the first term in (6). The

Green’s function (20) and the charge density representa-

tion (7) are substituted in (6). The integration over k ~ is

done numerically by means of a Gauss quadrature inte-

gration. For an integration over the excitation segment we

make a distinction between linear and curved segments,

For linear segments the first term of (6) yields integrals of

the following form:

lv =/s’s”exp(as)cos(b – SC) ds (23)
so

where a, b, and c are constants. When v is an integer, Iv

is calculated analytically; otherwise a Gauss–Jacobi or

Gauss quadrature integration is used, depending on

whether SO is zero or not. The case where v is not an
integer occurs only for segments at the corners of the

conductors.
For circular and elliptic segments the first term of (6)

yields integrals of the following form:

(.cos[b–ccos(@)]

sin[b–ccos(~)] }

~a’cos’(~) + .’sin’(@) d+ (24)

where a, b, c, and @C are constants. When Ial = Icl we

have circular segments; when Ial # Icl we have elliptic

segments, The integrations are performed using a

Gauss–Jacobi quadrature if do = O and a simple Gauss

quadrature if ~0 * O. The same technique can be applied

to more general segments with other parameter represen-

tations. The quantities SO in (23) and 40 in (24) are

different from zero when the observation point and the

points of the excitation segment have the same z cclordi-

nate. This is because we have to use another Green’s

function for the part of the excitation segment above and

the part under the observation point, The integration over

the excitation segment needs to be performed only once

for all observation points, except when there are observa-

tion points at the same level as the excitation segment.

B. Infinite Spectral Integral Contribution

Now we will take a closer jook at the second term in

(6). We again insert the asymptotic Green’s function (21)
and the charge density representation (7) in this second

term. For linear segments we get integrals of the followi-

ng form:

+mexp(–kYd)
Iv=~ k

kc

/S1suexp(akYs)cos[ kY(b-~c)]d~dkY (25)
$0

where a, b, c, and d are constants. When v is an integer,

both integrations can be calculated analytically. However,

if v is not integer, only the spectral integration is per-

formed analytically and the spatial integration is per-

formed numerically. We refer the reader to the Appendix

for a full discussion. Circular and elliptic segments yield

integrals which are more complicated than (25). However,

they can be handled with the same techniques as irn the

Appendix.

VII. EXAMPLES

A. Illustration of the Use of Parabolic Basis Functions

In this example we demonstrate and discuss the use of

a piecewise-parabolic representation for the surface

charge density. Along each segment we represent p(s) as

p(s) = SW(AO + ~lS + z42S2), ~ > –0.5. (26)
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Fig. 3. Piecewise-constant and piecewise-linear representations of the surface charge density on a rectangular conductor
with (a) three divisions and (b) 12 divisions on each side.

TABLE III

CAPACITANCE AND RESISTANCE (r = aR /R~) FOR THE RECTANGLE IN FIG. 3

Three Divisions per Side 12 Divisions per Side

Piecewise-constant representation C = 4.4834 e-n F/m C = 4.5287 e-n F/m
r = 0.19747 r = 0.21085

Piecewise-linear representation C = 4.5382 e-n F/m C = 4.5377 e-n F/m
r = 0.23753 r = 0.23753

We have now three unknowns, A ~, A ~ and A ~, in each

segment. At the junction of two segments we impose the

continuity of p(s) and of alp(s)/ ds. There remains one

unknown for each segment. Equations for these remain-

ing unknowns are found by means of point matching. The

use of recursion relations in integrations of the type (23),

(24), and (25) has as a consequence that going from a

piecewise-linear representation to a piecewise-parabolic

one does not significantly increase CPU time. On the

contrary, the use of a parabolic representation allows us

to save drastically on the number of segments, as illus-

trated in the example below. We consider a circular wire

with diameter d = 1 located at a height, H, above a

ground plane in a semi-infinite dielectric with ~, =4. In

Table I the capacitance, C, and the resistance, R, per unit

length are given for different numerical approaches when

H = 2. Losses in the wire are divided by the surface

resistance, R.. We notice that the results for eight piece-

wise-parabolic segments are as accurate as the results for
24 piecewise-linear segments. In particular, the accuracy

of R/R, is impressive when we use a parabolic represen-

tation. In Table II, C and R \R$ are given for H =3, 4,
and 5 both for a piecewise-parabolic and for a piecewise-

Iinear representation.

B. Illustration of the Necessity of Hauing Accurate Surface

Charge Density Representations for the Calculation of R

In example 3 of [3] the R matrix is given for a combina-

tion of four conducting transmission lines. We will show

that the results for R presented in [3] have a limited

degree of accuracy, taking into account the small number

Er,3

E

%2
202.3 ---

14
----

290.6 249.5
&r,1

\
:\+’.<\\\ \

(a) (b)

Fig. 4. Typical Multiwire structure in (a) microstrip and (b) stripline

configurations.

of segments with piecewise-constant charge density repre-

sentations used in the numerical approach. To this end

we consider a rectangular conductor, with dimensions

a x 2a, located in the air at a height a above a ground
plane (inset of Fig. 3(a)). Fig. 3(a) shows a surface charge

density pIot for three segments on each side of the
rectangle for piecewise-constant basis functions (blocked

line) and piecewise-linear basis functions (continuous

line). In Fig. 3{b) we used 12 segments on each side. In

Table 111 the values for C and r = aR \R, are given. We

can see that the use of a small number of piecewise-con-

stant segments is acceptable for the calculation of C. This

is because the area under the piecewise-constant charge

distribution plot is almost equal to the area under the real

charge distribution plot, and C is proportional to this

area. R, however, is proportional to the area under the

square of the real charge distribution plot (in fact propor-

tional to the square of .lX but we use the equivalent
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Fig. 5. Capacitance of thewire in Fig. 4(a) and Fig. 4(b) as a function
of ●r,2.

electrostatic problem terminology). This means that we

must have a very accurate charge density representation,

especially at singularities, in order to get accurate results

for R. We indeed notice in Table HI that the values for C

are not that far apart, especially when the number of

divisions increases. The values for r, however, remain too

small when using a piecewise-constant representation,

even for an increased number of divisions.

C. Illustration of a Multiwire Bus Structure

The method presented in this paper was developed

with the particular aim in mind of also being able to

handle new circuit board technologies such as the discrete

wiring boards. The next example considers a realistic

Multiwire structure with a wire located in a three-layered

medium as shown in Fig. 4(a) (microstrip configuration)

and Fig. 4(b) (stripline configuration). The dimensions are

given in mm and ●, ~= 4 and er,~ = 1. In Fig. 5 we show a

plot of C as a func~ion of C,,z for both configurations. We

used 24 divisions on each wire. Fig. 6(a) (Fig. 6(b)) shows

a plot of the surface charge density on the wire of Fig.

4(a) when 6,,2 = 4.3 (c, ~ = 3.7). The surface charge den-

sity becomes zero in F(g. 6(a) and infinite in Fig. 6(b) at

the intersection of the layer interface, as predicted by

Meixner’s condition. In Table IV the C, L, and R matri-

ces are given for the structure of Fig. 4(a) (~,, ~ = 4.3) with

three wires at the same height numbered from left to

right with a center to center separation of 360 mm. The R
matrices for losses both in the ground plane and in the

wires are given. The results for C and L are given with

four to six significant digits. This demonstrates the accu-

racy of our method because the program was written in

single precision with a seven-digit representation.

D. Illustration of the Use of Curued Sides

The last example (Fig. 7) shows the flexibility of our

method and in particular the possibility of accurately

modeling conductors with a complicated shape. We con-

sider three conductors around

plane. The C matrix is given by

c=

907

a wire above a glround

.33 – 45.33\136.00 – 45.33 – 45
– 45.33 128.87 –36.92 –36.92
– 45.33 –36.92 148.64 –31.73

pF/m.

\ -45.33 -36.92 -31.73 148.64)

(27)

Notice that Cll = Clz + Cl~ + Clq to within the numerical

accuracy. This means that the central conductor is allmost

completely shielded from the ground plane.

APpENDIX

In this Appendix we will go into some detail about the

calculation of (25). First we introduce the integral

J(kc, n,d, b,c):

J(kC, n,d, b,c) = j
+mexp–kYd)

k;
cos(kYb+c)dkY.

kc

(Al)

This integral can be calculated analytically by making use

of exponential integrals [10], The result is

“-1 (-l) ’rn-’(rz-i-l)!
J=-exp(-kcd) ~

~=1 k~-i(n–l)!

“cos[kCb+c+(i–l)t]

_ (-~)”m-l

(n-l)!
{

-[y+ln(kCm)] cos[c+(n-l)t]

.+tsin[c+(n–l)t]

- f (-l;;,k;mlcos[c+(n–l+i)t]

}

(A2)
~=1

with y = 0.57722 . . . being Euler–Mascheroni number,

rn =-, and t= arctan2(- b, d). The function

– m < arctan 2(x, y)< T is the inverse tangent of x di-

vided by y for four quadrants in the w plane. When v is

an integer we integrate (25) analytically and get the fol-

lowing result:

n+l

[

n+l —in!sO
In= ~ .l(kc, i+l, d-asO, b-csO, i~)

,=1 (n+l-i)!

n+l —tn!sl
—

(n+l–i)!
1

J(kc, i+l, d–asl, b–csl, i7) (,43)

with ~ = arctan 2( – c, – a). When v is not an integer the

integration over s is calculated numerically and we make

a further distinction between SO= O and SO+ O. When SO

is equal to zero we can place (25), making use of (A2),
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Distance on conductor surface (a. u.)

(a)

Distance on conductor surface (a. u.)

(b)

Fig. 6. Surface charge density on the wire of Fig. 4(a) when (a) ●y,z = 4.3 and (b) ~,,z = 3.7.

TABLE IV

CAPACITANCE, INDUCTANCE, AND RESISTANCE MATRICES FOR A Bus MULTIWIRE STRUCTURE
WITH THREE WIRES

R/R, (l/m) R/R, (l/m)
Element C (F/m) L (H/m) Wires Ground Plane

11,33 L15101 e-10 4.04751 e-7 2.3235 e-3 1.4877 e-3

12,21,23,32 – 4.2479 e-n 1.40617 e-7 1.3536 e-4 1.2319 e-3

13,31 – 1.7326 e-12 6.3331 e-8 8.798 e-5 6.0485 e-4

22 1.33432 e-10 3.98183 e-7 2.0851 e-3 1.7456 e-3

100°

2

~1

1

a 2a a

3 4

5a

E.=1

l-ii\\\\\\\\\Y t\\\\\\\\\\\\\\
Fig. 7. Curved conductor configuration with three conductors around

a wire above a ground plane.

into the following form:

{

Zu=$:+’ –
y+ln(kc)

V+l

-:(+ d–aslx)’+ (b–c,sl.x)’]d.x

- s ‘-:.; zk:~’x”[~(d- aslx)’+(b-cslx)’]’
*=1

)“cos[iarctan2( –b+cslx, d–aslx)] & . (A4)

The remaining integrations are calculated with a Gauss–

Jacobi quadrature integration. When d – asl = b – Csl = O,

we cannot use this formula because the first integrand has

a logarithmic singularity in x = 1. This situation will occur

in self-patch calculations. We have to rearrange the inte-

grals. After some calculations we get

[

y+ln(kCsl)+ln (;)[l-(;)”+l]

l,=s; +1 –
U+l

_ f (-l) ’(kcsl)i

C=l
ii!

“cos [iarctan2( – c,a

The first integral is calculated with a Gauss–Jacobi

quadrature. The second is calculated with a special Gauss

quadrature for logarithmic singularities. When ,sOis not

equal to zero we can put (25) in a form similar to (A4),

except that now we use Gauss quadrature instead of

Gauss–Jacobi quadrature. In the case of self-patch calcu-

lations we get a formula analogous to (A5) with inte-

grands which again have logarithmic singularities.
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